Elman Backpropagation as Reinforcement for Simple Recurrent Networks
نویسنده
چکیده
Simple recurrent networks (SRNs) in symbolic time-series prediction (e.g., language processing models) are frequently trained with gradient descent--based learning algorithms, notably with variants of backpropagation (BP). A major drawback for the cognitive plausibility of BP is that it is a supervised scheme in which a teacher has to provide a fully specified target answer. Yet agents in natural environments often receive summary feedback about the degree of success or failure only, a view adopted in reinforcement learning schemes. In this work, we show that for SRNs in prediction tasks for which there is a probability interpretation of the network's output vector, Elman BP can be reimplemented as a reinforcement learning scheme for which the expected weight updates agree with the ones from traditional Elman BP. Network simulations on formal languages corroborate this result and show that the learning behaviors of Elman backpropagation and its reinforcement variant are very similar also in online learning tasks.
منابع مشابه
Back-Propagation as Reinforcement in Prediction Tasks
The back-propagation (BP) training scheme is widely used for training network models in cognitive science besides its well known technical and biological short-comings. In this paper we contribute to making the BP training scheme more acceptable from a biological point of view in cognitively motivated prediction tasks overcoming one of its major drawbacks. Traditionally, recurrent neural networ...
متن کاملAcoustic-to-phonetic mapping using recurrent neural networks
This paper describes the application of artificial neural networks to acoustic-to-phonetic mapping. The experiments described are typical of problems in speech recognition in which the temporal nature of the input sequence is critical. The specific task considered is that of mapping formant contours to the corresponding CVC' syllable. We performed experiments on formant data extracted from the ...
متن کاملA New Technique for Solar Activity Forecasting using Recurrent Elman Networks
In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification” of the time series under stu...
متن کاملTime Series Prediction with Multilayer Perceptron, FIR and Elman Neural Networks
Multilayer perceptron network (MLP), FIR neural network and Elman neural network were compared in four different time series prediction tasks. Time series include load in an electric network series, fluctuations in a far-infrared laser series, numerically generated series and behaviour of sunspots series. FIR neural network was trained with temporal backpropagation learning algorithm. Results s...
متن کاملFinancial Time Series Prediction Using Elman Recurrent Random Neural Networks
In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 19 11 شماره
صفحات -
تاریخ انتشار 2007